improve anaconda.c

make some changes to anaconda:
  -> fix memory leaks
  -> add tabs instead of spaces
  -> show score on screen
  -> adapt to different screen sizes
This commit is contained in:
randomuser 2022-08-15 18:42:26 -05:00
parent d37e632bd8
commit 6b5d621820

View File

@ -8,15 +8,15 @@
#include <X11/Xlib.h>
typedef struct point {
double x;
double y;
struct point *next;
double x;
double y;
struct point *next;
} point;
typedef struct anaconda {
int score;
double rot;
struct point *chain;
int score;
double rot;
struct point *chain;
} anaconda;
Display *d;
@ -26,13 +26,13 @@ int s;
GC gc;
void xinit(void) {
d = XOpenDisplay(NULL);
s = DefaultScreen(d);
w = XCreateSimpleWindow(d, RootWindow(d, s), 10, 10, 100, 100, 1,
BlackPixel(d, s), WhitePixel(d, s));
XSelectInput(d, w, ExposureMask | KeyPressMask | PointerMotionMask);
XMapWindow(d, w);
gc = XCreateGC(d, w, 0, NULL);
d = XOpenDisplay(NULL);
s = DefaultScreen(d);
w = XCreateSimpleWindow(d, RootWindow(d, s), 10, 10, 100, 100, 1,
BlackPixel(d, s), WhitePixel(d, s));
XSelectInput(d, w, ExposureMask | KeyPressMask | PointerMotionMask);
XMapWindow(d, w);
gc = XCreateGC(d, w, 0, NULL);
}
/* thanks to
@ -41,162 +41,207 @@ void xinit(void) {
*/
int ccw(point *a, point *b, point *c) {
return (c->y - a->y) * (b->x - a->x) >
(b->y - a->y) * (c->x - a->x);
return (c->y - a->y) * (b->x - a->x) >
(b->y - a->y) * (c->x - a->x);
}
int intersect(point *a, point *b, point *c, point *d) {
return (ccw(a, c, d) != ccw(b, c, d)) && (ccw(a, b, c) != ccw(a, b, d));
return (ccw(a, c, d) != ccw(b, c, d)) && (ccw(a, b, c) != ccw(a, b, d));
}
int randrange(int b, int s) {
return rand() % (b - s + 1) + s;
return rand() % (b - s + 1) + s;
}
int eucliddist(point *a, point *b) {
return sqrt(pow(a->x - b->x, 2) + pow(a->y - b->y, 2));
return sqrt(pow(a->x - b->x, 2) + pow(a->y - b->y, 2));
}
point *mkPoint(double x, double y) {
point *ret = malloc(sizeof *ret);
point *ret = malloc(sizeof *ret);
ret->x = x;
ret->y = y;
ret->next = NULL;
ret->x = x;
ret->y = y;
ret->next = NULL;
return ret;
return ret;
}
point *rotate(point *p, double rot) {
double rad = rot * M_PI/180;
double rad = rot * M_PI/180;
return mkPoint(
p->x * cos(rad) - p->y * sin(rad),
p->x * sin(rad) + p->y * cos(rad)
);
return mkPoint(
p->x * cos(rad) - p->y * sin(rad),
p->x * sin(rad) + p->y * cos(rad)
);
}
void appendPoint(point *dest, point *origin) {
while(dest->next) dest = dest->next;
dest->next = origin;
while(dest->next) dest = dest->next;
dest->next = origin;
}
int updateAnaconda(anaconda *anaconda, int w, int h, point *apple) {
point *temp, *new, *ptr;
new = anaconda->chain;
temp = rotate(mkPoint(10, 0), anaconda->rot);
new = mkPoint(
new->x + temp->x,
new->y + temp->y
);
new->next = anaconda->chain;
anaconda->chain = new;
int updateAnaconda(anaconda *anaconda, point *basepoint, int w, int h, point *apple) {
point *temp, *new, *ptr;
new = anaconda->chain;
free(temp);
temp = rotate(basepoint, anaconda->rot);
new = mkPoint(
new->x + temp->x,
new->y + temp->y
);
new->next = anaconda->chain;
anaconda->chain = new;
if(eucliddist(new, apple) <= 30) {
anaconda->score += 30;
apple->x = randrange(20, w / 2);
apple->y = randrange(20, h / 2);
} else {
ptr = new;
free(temp);
while(1) {
if(ptr->next) {
if(ptr->next->next) ptr = ptr->next;
else break;
} else break;
}
free(ptr->next);
ptr->next = NULL;
}
if(eucliddist(new, apple) <= 30) {
anaconda->score += 30;
apple->x = randrange(20, w / 2);
apple->y = randrange(20, h / 2);
} else {
ptr = new;
ptr = anaconda->chain;
for(int i = 0; i < 3; i++) {
if(ptr->next) ptr = ptr->next;
else return 1; /* we're fine, the snake is too short to intersect itself */
}
while(1) {
if(ptr->next) {
if(ptr->next->next) ptr = ptr->next;
else break;
} else break;
}
free(ptr->next);
ptr->next = NULL;
}
while(ptr->next) {
if(intersect(new, new->next, ptr, ptr->next)) return 0;
ptr = ptr->next;
}
ptr = anaconda->chain;
for(int i = 0; i < 3; i++) {
if(ptr->next) ptr = ptr->next;
else return 1; /* we're fine, the snake is too short to intersect itself */
}
if(
new->x >= w || new->x <= 0 ||
new->y >= h || new->y <= 0
) return 0;
while(ptr->next) {
if(intersect(new, new->next, ptr, ptr->next)) return 0;
ptr = ptr->next;
}
if(eucliddist(new, apple) <= 30) {
anaconda->score += 30;
apple->x = randrange(20, w / 2);
apple->y = randrange(20, h / 2);
}
if(
new->x >= w || new->x <= 0 ||
new->y >= h || new->y <= 0
) return 0;
return 1;
if(eucliddist(new, apple) <= 30) {
anaconda->score += 30;
apple->x = randrange(20, w / 2);
apple->y = randrange(20, h / 2);
}
return 1;
}
void freeAnaconda(anaconda *anaconda) {
point *current = anaconda->chain;
point *next = NULL;
for(;;) {
if(!current) break;
next = current->next;
free(current);
current = next;
}
free(anaconda);
return;
}
point *generateChain(int length) {
point *ret = mkPoint(100, 100);
point *head = ret;
point *ret = mkPoint(100, 100);
point *head = ret;
for(int i = 1; i < length - 1; i++) {
ret->next = mkPoint(
10 * i + 100,
5 * i + 100
);
ret = ret->next;
}
for(int i = 1; i < length - 1; i++) {
ret->next = mkPoint(
10 * i + 100,
5 * i + 100
);
ret = ret->next;
}
return head;
return head;
}
anaconda *mkAnaconda(point *point, double rot) {
anaconda *ret = malloc(sizeof *ret);
anaconda *ret = malloc(sizeof *ret);
ret->chain = point;
ret->rot = rot;
ret->score = 0;
ret->chain = point;
ret->rot = rot;
ret->score = 0;
return ret;
return ret;
}
int main(void) {
anaconda *anaconda = mkAnaconda(generateChain(30), 0);
xinit();
srand(time(0));
int width = DisplayWidth(d, s);
int height = DisplayHeight(d, s);
point *apple = mkPoint(randrange(20, width / 2 - 20), randrange(20, height / 2 - 20));
while(1) {
if(!updateAnaconda(anaconda, width, height, apple)) {
return 0;
}
XClearWindow(d, w);
point *ptr = anaconda->chain;
while(ptr->next) {
XDrawLine(d, w, gc, ptr->x, ptr->y, ptr->next->x, ptr->next->y);
ptr = ptr->next;
}
printf("%f %f\n", apple->x, apple->y);
XDrawArc(d, w, gc, apple->x - (5/2), apple->y - (5/2), 5, 5, 0, 360*64);
while(XPending(d)) {
XNextEvent(d, &e);
switch(e.type) {
case KeyPress:
switch(e.xkey.keycode) {
case 113: /* left arrow key */
anaconda->rot += 10;
break;
case 114: /* right arrow key */
anaconda->rot -= 10;
break;
}
break;
}
}
usleep(100000);
}
anaconda *anaconda = mkAnaconda(generateChain(30), 0);
point *basepoint = mkPoint(10, 0);
char scorebuffer[30];
xinit();
srand(time(0));
int width = DisplayWidth(d, s);
int height = DisplayHeight(d, s);
point *apple = mkPoint(randrange(20, width / 2 - 20), randrange(20, height / 2 - 20));
int exposed = 0;
while(1) {
if(exposed) {
if(!updateAnaconda(anaconda, basepoint, width, height, apple)) {
freeAnaconda(anaconda);
free(apple);
free(basepoint);
return 0;
}
XClearWindow(d, w);
point *ptr = anaconda->chain;
while(ptr->next) {
XDrawLine(d, w, gc, ptr->x, ptr->y, ptr->next->x, ptr->next->y);
ptr = ptr->next;
}
XDrawArc(d, w, gc, apple->x - (5/2), apple->y - (5/2), 5, 5, 0, 360*64);
int len = snprintf(&scorebuffer, 30, "%i", anaconda->score);
XDrawString(d, w, gc, 25, 25, &scorebuffer, len);
}
while(XPending(d)) {
XNextEvent(d, &e);
switch(e.type) {
case KeyPress:
switch(e.xkey.keycode) {
case 113: /* left arrow key */
anaconda->rot += 10;
break;
case 114: /* right arrow key */
anaconda->rot -= 10;
break;
}
break;
case Expose:
/* hold off drawing until we get an expose event */
exposed = 1;
return 0;
width = e.xexpose.width;
height = e.xexpose.height;
if(apple->x > width) {
free(apple);
apple = mkPoint(randrange(20, width / 2 - 20), randrange(20, height / 2 - 20));
} else if (apple->y > height) {
free(apple);
apple = mkPoint(randrange(20, width / 2 - 20), randrange(20, height / 2 - 20));
}
break;
}
}
usleep(100000);
}
freeAnaconda(anaconda);
free(apple);
free(basepoint);
return 0;
}