#include "hid.h" #include "const.h" #include "util.h" #include "vec.h" #include #include #include #include #include #include #include #include #include #include #include #include // List of uniq of the currently known devices static Vec devices; // List of the new devices of a poll, static to keep the allocation alive static Vec new_devices; // Queue of devices to be taken by connections static Vec devices_queue; // Mutex for the device queue static pthread_mutex_t devices_queue_mutex = PTHREAD_MUTEX_INITIALIZER; // Condvar notified on device queue update static pthread_cond_t devices_queue_cond = PTHREAD_COND_INITIALIZER; // Mutex for devices static pthread_mutex_t devices_mutex = PTHREAD_MUTEX_INITIALIZER; // uniqs are just hexadecimal numbers with colons in between each byte uniq_t parse_uniq(char uniq[17]) { uniq_t res = 0; for (int i = 0; i < 17; i++) { char c = uniq[i]; int digit; if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = c - 'a' + 10; else if (c >= 'A' && c <= 'F') digit = c - 'A' + 10; else continue; res <<= 4; res += digit; } return res; } // Finish setup of a partially initialized device (set device_info and mapping) void setup_device(PhysicalDevice *dev) { dev->device_info.code = DeviceInfo; dev->device_info.abs_count = 0; dev->device_info.rel_count = 0; dev->device_info.key_count = 0; for (int i = 0; i < ABS_CNT; i++) dev->mapping.abs_indices[i] = -1; for (int i = 0; i < REL_CNT; i++) dev->mapping.rel_indices[i] = -1; for (int i = 0; i < KEY_CNT; i++) dev->mapping.key_indices[i] = -1; uint8_t type_bits[EV_MAX] = {}; uint8_t feat_bits[(KEY_MAX + 7) / 8] = {}; ioctl(dev->event, EVIOCGBIT(0, EV_MAX), type_bits); // Loop over all event types for (int type = 0; type < EV_MAX; type++) { // Ignore if the the device doesn't have any of this event type if (!bit_set(type_bits, type)) { continue; } // Clear feat_bits to only have the features of the current type memset(feat_bits, 0, sizeof(feat_bits)); ioctl(dev->event, EVIOCGBIT(type, KEY_MAX), feat_bits); // Loop over "instances" of type (i.e Each axis of a controller for EV_ABS) for (int i = 0; i < KEY_MAX; i++) { // "instances" don't have to be consecutive (this is why we do all this instead of just worrying // about the count) if (!bit_set(feat_bits, i)) { continue; } if (type == EV_ABS) { struct input_absinfo abs; ioctl(dev->event, EVIOCGABS(i), &abs); uint16_t index = dev->device_info.abs_count++; dev->device_info.abs_min[index] = abs.minimum; dev->device_info.abs_max[index] = abs.maximum; dev->device_info.abs_fuzz[index] = abs.fuzz; dev->device_info.abs_flat[index] = abs.flat; dev->device_info.abs_res[index] = abs.resolution; // Bidirectional mapping id <-> index // We need this to avoid wasting space in packets because ids are sparse dev->device_info.abs_id[index] = i; dev->mapping.abs_indices[i] = index; } else if (type == EV_REL) { uint16_t index = dev->device_info.rel_count++; dev->device_info.rel_id[index] = i; dev->mapping.rel_indices[i] = index; } else if (type == EV_KEY) { uint16_t index = dev->device_info.key_count++; dev->device_info.key_id[index] = i; dev->mapping.key_indices[i] = index; } } } } // Function used to filter out devices that we don't want. // This is pretty arbritrary bool filter_event(int fd, char *event) { // Check for existance of a js* directory in /sys/class/input/eventXX/device // This is used to filter out the touchpad of PS4 controller (which have the same product and vendor id as // the controller) { char device_path[64]; snprintf(device_path, 64, "/sys/class/input/%s/device", event); DIR *device_dir = opendir(device_path); struct dirent *device_dirent; bool found = false; while ((device_dirent = readdir(device_dir)) != NULL) { if (device_dirent->d_type == DT_DIR && strncmp(device_dirent->d_name, "js", 2) == 0) { found = true; break; } } closedir(device_dir); if (!found) { return false; } } // Check product and vendor id 054c:05c4 => Dualshock 4 (09cc is for the second generation) uint16_t info[4]; ioctl(fd, EVIOCGID, info); return info[1] == 0x054c && (info[2] == 0x05c4 || info[2] == 0x09cc); } // Initialize vectors for polling void poll_devices_init() { devices = vec_of(uniq_t); new_devices = vec_of(PhysicalDevice); devices_queue = vec_of(PhysicalDevice); } // Block to get a device, this is thread safe PhysicalDevice get_device() { // Check if we can get one right away pthread_mutex_lock(&devices_queue_mutex); if (devices_queue.len > 0) { PhysicalDevice r; vec_pop(&devices_queue, &r); pthread_mutex_unlock(&devices_queue_mutex); return r; } // Wait on condvar until there's a device and we can unlock the mutex while (devices_queue.len == 0) { pthread_cond_wait(&devices_queue_cond, &devices_queue_mutex); } // Take a device from the queue PhysicalDevice res; vec_pop(&devices_queue, &res); // Signal another thread if there are still device(s) left in the queue if (devices_queue.len > 0) { pthread_cond_signal(&devices_queue_cond); } pthread_mutex_unlock(&devices_queue_mutex); return res; } // Forget about a device. This is used on two cases: // - If the connection to a client is lost, the device is forgotten, picked up by the next device poll, and // put back in the queue // - If the device dies (i.e unplugged), the connection to the client is closed and the device forgotten. // // This is thread safe void return_device(PhysicalDevice *dev) { if (dev->name != NULL && dev->name != DEVICE_DEFAULT_NAME) { // Free the name if it was allocated printf("HID: Returning device '%s' (%012lx)\n", dev->name, dev->uniq); free(dev->name); } else { printf("HID: Returning device %012lx\n", dev->uniq); } // try to close the file descriptor, they may be already closed if the device was unpugged. close(dev->event); close(dev->hidraw); // Safely remove device from the known device list pthread_mutex_lock(&devices_mutex); for (int i = 0; i < devices.len; i++) { uniq_t *uniq = vec_get(&devices, i); if (*uniq == dev->uniq) { vec_remove(&devices, i, NULL); break; } } pthread_mutex_unlock(&devices_mutex); } // Find all available devices and pick up on new ones void poll_devices() { vec_clear(&new_devices); // loop over all entries of /sys/class/input DIR *input_dir = opendir("/sys/class/input"); struct dirent *input; while ((input = readdir(input_dir)) != NULL) { // Ignore if the entry isn't a link or doesn't start with event if (input->d_type != DT_LNK || strncmp(input->d_name, "event", 5) != 0) { continue; } PhysicalDevice dev; // Open /dev/input/eventXX char event_path[64]; snprintf(event_path, 64, "/dev/input/%s", input->d_name); dev.event = open(event_path, O_RDONLY); if (dev.event < 0) { // Ignore device if we couldn't open continue; } // Try to get the name, default to DEFAULT_NAME if impossible char name_buf[256] = {}; const char *name; if (ioctl(dev.event, EVIOCGNAME(256), name_buf) >= 0) { name = name_buf; } else { name = DEVICE_DEFAULT_NAME; } // Filter events we don't care about if (!filter_event(dev.event, input->d_name)) { goto skip; } // Try to get uniq, drop device if we can't uniq_t uniq; { char uniq_str[17] = {}; ioctl(dev.event, EVIOCGUNIQ(17), uniq_str); uniq = parse_uniq(uniq_str); // If we couldn't parse the uniq (this assumes uniq can't be zero, which is probably alright) if (uniq == 0) { goto skip; } } // Check if we already know of this device bool found = false; pthread_mutex_lock(&devices_mutex); for (int i = 0; i < devices.len; i++) { uniq_t *dev_uniq = vec_get(&devices, i); if (*dev_uniq == uniq) { found = true; break; } } pthread_mutex_unlock(&devices_mutex); if (found) { // Device isn't new goto skip; } dev.uniq = uniq; // Try to find hidraw path for the device, drop the device if we can't char hidraw_path[64]; { char hidraw_dir_path[256]; snprintf(hidraw_dir_path, 256, "/sys/class/input/%s/device/device/hidraw", input->d_name); DIR *hidraw_dir = opendir(hidraw_dir_path); struct dirent *hidraw = NULL; while ((hidraw = readdir(hidraw_dir)) != NULL) { if (strncmp(hidraw->d_name, "hidraw", 6) == 0) { break; } } if (hidraw == NULL) { printf("Couldn't get hidraw of %s", input->d_name); continue; } snprintf(hidraw_path, 64, "/dev/%s", hidraw->d_name); closedir(hidraw_dir); } dev.hidraw = open(hidraw_path, O_WRONLY); if (dev.hidraw < 0) { goto skip; } if (name != DEVICE_DEFAULT_NAME) { dev.name = malloc(256); if (dev.name == NULL) { dev.name = (char *)DEVICE_DEFAULT_NAME; } else { strcpy(dev.name, name); } } setup_device(&dev); pthread_mutex_lock(&devices_mutex); vec_push(&devices, &uniq); pthread_mutex_unlock(&devices_mutex); vec_push(&new_devices, &dev); printf("HID: New device, %s (%s: %012lx)\n", name, input->d_name, dev.uniq); // Continue here to avoid running cleanup code of skip continue; // close open file descriptor and continue skip: close(dev.event); continue; }; closedir(input_dir); // Safely add new devices to the queue if (new_devices.len > 0) { pthread_mutex_lock(&devices_queue_mutex); vec_extend(&devices_queue, new_devices.data, new_devices.len); // Signal that there are new devices pthread_cond_signal(&devices_queue_cond); pthread_mutex_unlock(&devices_queue_mutex); } } // "Execute" a MessageControllerState: set the led color, rumble and flash using the hidraw interface void apply_controller_state(PhysicalDevice *dev, MessageControllerState *state) { printf("HID: (%012lx) Controller state: #%02x%02x%02x flash: (%d, %d) rumble: (%d, %d)\n", dev->uniq, state->led[0], state->led[1], state->led[2], state->flash_on, state->flash_off, state->small_rumble, state->big_rumble); uint8_t buf[32] = {0x05, 0xff, 0x00, 0x00}; buf[4] = state->small_rumble; buf[5] = state->big_rumble; buf[6] = state->led[0]; buf[7] = state->led[1]; buf[8] = state->led[2]; buf[9] = state->flash_on; buf[10] = state->flash_off; write(dev->hidraw, buf, 32); if (state->flash_on == 0 && state->flash_off == 0) { // May not be necessary fsync(dev->hidraw); // Send a second time, to reenable the led write(dev->hidraw, buf, 32); }; } // Body of the hid thread void *hid_thread() { printf("HID: start\n"); poll_devices_init(); while (1) { poll_devices(); nanosleep(&POLL_DEVICE_INTERVAL, NULL); } return NULL; }