Compare commits

..

No commits in common. "2801a3f4cd6561265280d11368edc0ab51d8f44f" and "f92a3f9a40cc334b0137823f78aa38dc818b6db6" have entirely different histories.

11 changed files with 30 additions and 521 deletions

2
.gitignore vendored
View File

@ -1,2 +0,0 @@
__pycache__
venv

View File

@ -1,6 +1,4 @@
from enum import Enum, auto
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
class MappedAction(Enum):
CUT_UNCONDITIONALLY = auto(),
@ -13,7 +11,18 @@ class FinalAction(Enum):
CUT = auto(),
NO_CUT = auto()
class ComplicatedWiresModule:
class GlobalState:
def __init__(self, serial, parallel, batteries):
self.serial = serial
self.parallel = parallel
self.batteries = batteries
if int(self.serial[-1]) % 2 == 0:
self.serial_even = True
else:
self.serial_even = False
class ComplicatedWire:
def __init__(self, red, blue, star, led, state):
self.red = red
self.blue = blue
@ -54,6 +63,7 @@ class ComplicatedWiresModule:
def resolveAction(self):
action = self.getAction()
print(action)
if action == MappedAction.CUT_UNCONDITIONALLY:
return FinalAction.CUT
@ -62,12 +72,12 @@ class ComplicatedWiresModule:
return FinalAction.NO_CUT
elif action == MappedAction.CUT_IF_DIGIT_EVEN:
if self.state.serial.is_even:
if self.state.serial_even:
return FinalAction.CUT
return FinalAction.NO_CUT
elif action == MappedAction.CUT_IF_PARALLEL:
if 'Para' in self.state.ports:
if self.state.parallel:
return FinalAction.CUT
return FinalAction.NO_CUT
@ -77,23 +87,22 @@ class ComplicatedWiresModule:
return FinalAction.NO_CUT
@classmethod
def interactive(cls, state, cmdline):
completer = WordCompleter(['red', 'blue', 'star', 'led', 'quit', 'exit'])
def human_helper(cls):
serial = input("serial (string)? ")
parallel = cls.custom_bool(input("parallel (bool)? "))
batteries = int(input("number of batteries (int)? "))
# there are 6 wires in the complicated wires module
while True:
text = prompt('compwires> ', completer=completer, complete_while_typing=True)
red = cls.custom_bool(input("is red (bool)? "))
blue = cls.custom_bool(input("is blue (bool)? "))
star = cls.custom_bool(input("is star (bool)? "))
led = cls.custom_bool(input("is led (bool)? "))
if text == "quit":
return
print(red, blue, star, led)
elif text == "exit":
return
state = GlobalState(serial, parallel, batteries)
wire = cls(red, blue, star, led, state)
attr = [i in text for i in ['red', 'blue', 'star', 'led']]
print(wire.resolveAction())
try:
print("CUT" if cls(*attr, state).resolveAction() == FinalAction.CUT else "NO CUT")
except AttributeError:
print("the state hasn't been completed. maybe fill out the serial?")
if __name__ == "__main__":
ComplicatedWire.human_helper()

View File

@ -1,6 +1,3 @@
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
class FoundCondition(Exception):
pass
@ -63,7 +60,7 @@ class PasswordModule:
default module execution location
(hint, default module execution location is where __name__ ==
"__main__")
"__main__"
"""
responses = []
@ -74,16 +71,5 @@ class PasswordModule:
obj = cls(responses)
return obj.solve()
@classmethod
def interactive(cls, state, cmdline):
responses = []
for i in range(5):
print("Enter {}th column of letters:".format(str(i + 1)))
response = [*prompt('password> ')]
responses.append(response)
password = cls(responses)
print(password.solve())
if __name__ == "__main__":
print(PasswordModule.human_helper())

View File

@ -1,5 +0,0 @@
prompt_toolkit
pyautogui
pywinctl
opencv-python
numpy

View File

@ -1,44 +0,0 @@
from modules.wires import WiresModule
from modules.button import ButtonModule
from modules.comp_wires import ComplicatedWiresModule
from modules.password import PasswordModule
modules = {
'wires': WiresModule,
'button': ButtonModule,
'keypad': None,
'simon': None,
'first': None,
'memory': None,
'morse': None,
'compwires': ComplicatedWiresModule,
'seqwires': None,
'maze': None,
'password': PasswordModule,
'vent': None,
'discharge': None,
'knob': None,
}
indicators = [
'SND',
'CLR',
'CAR',
'IND',
'FRQ',
'SIG',
'NSA',
'MSA',
'TRN',
'BOB',
'FRK',
]
ports = [
'DVI',
'Para',
'PS2',
'RJ45',
'Serial',
'RCA',
]

View File

@ -1,69 +0,0 @@
from enum import Enum, auto
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
class ButtonAction(Enum):
RELEASE = auto(),
HOLD = auto()
class ButtonModule:
def __init__(self, color, text, state):
self.color = color
self.text = text.lower()
self.state = state
def solve(self):
if self.color == "blue" and self.text == "abort":
return ButtonAction.HOLD
elif self.state.batteries > 1 and self.text == "detonate":
return ButtonAction.RELEASE
try:
if self.color == "white" and self.indicators["CAR"] == True:
return ButtonAction.HOLD
except KeyError: pass
try:
if self.state.batteries > 2 and self.indicators["FRK"] == True:
return ButtonAction.RELEASE
except KeyError: pass
if self.color == "yellow":
return ButtonAction.HOLD
elif self.color == "red" and self.text == "hold":
return ButtonAction.RELEASE
return ButtonAction.HOLD
def hold(self, color):
if color == "blue":
return 4
elif color == "white":
return 1
elif color == "yellow":
return 5
return 1
@classmethod
def interactive(cls, state, cmdline):
print("Please enter button color")
color = prompt('button> ')
print("Please enter button text")
text = prompt('button> ')
button = cls(color, text, state)
result = button.solve()
if result == ButtonAction.HOLD:
print("What is the held button color")
heldcolor = prompt('button> ')
print("Release until the timer has a {} in any position".format(
str(button.hold(heldcolor))
))
else:
print("Release")

View File

@ -1,78 +0,0 @@
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
class WiresModule:
def __init__(self, wires, state):
self.state = state
self.wires = wires.split(' ')
self.len = len(self.wires)
def solve(self):
# prints the solved solution
if self.len == 3:
if not 'red' in self.wires:
return "second wire"
elif self.wires[-1] == "white":
return "last wire"
elif self.wires.count('blue') > 1:
return "last blue wire"
else:
return "last wire"
elif self.len == 4:
if self.wires.count('red') > 1 and self.state.serial.is_odd:
return "last red wire"
elif self.wires[-1] == 'yellow' and not 'red' in self.wires:
return "first wire"
elif self.wires.count('blue') == 1:
return "first wire"
elif self.wires.count('yellow') > 1:
return "last wire"
else:
return "second wire"
elif self.len == 5:
if self.wires[-1] == 'black' and self.state.serial.is_odd:
return "fourth wire"
elif self.wires.count('red') == 1 and self.wires.count('yellow') > 1:
return "first wire"
elif not 'black' in self.wires:
return "second wire"
else:
return "first wire"
elif self.len == 6:
if not 'yellow' in self.wires and self.state.serial.is_odd:
return "third wire"
elif self.wires.count('yellow') == 1 and self.wires.count('white') > 1:
return "fourth wire"
elif not 'red' in self.wires:
return "last wire"
else:
return "fourth wire"
@classmethod
def interactive(cls, state, cmdline):
completer = WordCompleter(['red', 'blue', 'yellow', 'white', 'black'])
print("Please enter wire colors from top to bottom.")
text = prompt('wires> ', completer=completer, complete_while_typing=True)
wires = WiresModule(text, state)
print("cut the {}".format(wires.solve()))
return

View File

@ -1,131 +0,0 @@
from constants import modules, indicators, ports
from prompt_toolkit import PromptSession
from prompt_toolkit.completion import NestedCompleter
maincompleter = NestedCompleter.from_nested_dict({
'help': None,
'mark': None,
'serial': None,
'strike': None,
'batteries': None,
'eval': None,
'indicator': {*[indicator for indicator in indicators]},
'ports': {*[port for port in ports]},
'mod': {*["mod {}".format(module) for module in modules.keys()]},
})
class Serial:
def __init__(self, serial):
self.serial = serial.lower()
@property
def is_even(self):
if int(self.serial[-1]) % 2 == 0:
return True
return False
@property
def is_odd(self):
return not self.is_even
@property
def vowel(self):
for vowel in ['a', 'e', 'i', 'o', 'u']:
if vowel in self.serial:
return True
return False
@property
def no_vowel(self):
return not self.vowel
@property
def text(self):
return self.serial
class GlobalBombState:
def __init__(self):
self.indicators = {}
self.ports = []
self._serial = None
self.batteries = 0
self.modulecount = 0
self.strikes = 0
@property
def serial(self):
return self._serial
@serial.setter
def serial(self, serial):
self._serial = Serial(serial)
def update_toolbar(self):
return "help for help, ports: {}, ind: {}, batt: {}, serial: {}, strikes {}".format(
self.ports, self.indicators, str(self.batteries), self.serial.text if self.serial else "?", str(self.strikes)
)
session = PromptSession(completer=maincompleter)
state = GlobalBombState()
while True:
userinput = session.prompt("ktane> ", bottom_toolbar=state.update_toolbar(), complete_while_typing=True)
splitted = userinput.split(' ')
tokens = len(splitted)
command = splitted[0]
if command == "mod":
if tokens == 1:
print(modules.keys())
elif tokens > 1:
if splitted[1].isnumeric():
state.modulecount = int(splitted[1])
print("module count set to {}".format(str(state.modulecount)))
else:
try:
selectedmodule = modules[splitted[1]]
if selectedmodule:
selectedmodule.interactive(state, splitted[2:])
else:
print("this module doesn't exist!")
except IndexError:
print("you didn't specify a module")
elif command == "serial": # set the serial number
try:
state.serial = splitted[1]
print("serial number set to {}".format(state.serial.text))
except IndexError:
print("specify a serial number, perhaps?")
elif command == "batteries":
try:
state.batteries = int(splitted[1])
print("battery count set to {}".format(str(state.batteries)))
except IndexError:
print("specify a number of batteries, perhaps?")
elif command == "strike":
state.strikes += 1
print("strike given")
elif command == "ports":
try:
state.ports.append(splitted[1])
print("appeneded port {}".format(splitted[1]))
except IndexError:
print("specify a port type")
elif command == "indicator":
try:
state.indicators[splitted[1]] = True if splitted[2] == 't' else False
print("added indicator {} with state {}".format(
splitted[1], state.indicators[splitted[1]]
))
except IndexError: print("specify an indicator and a state")
elif command == "eval":
eval(' '.join(splitted[1:]))

View File

@ -1,98 +0,0 @@
import pyautogui
import colorsys
import pywinctl
import numpy
import cv2 as cv
import struct
import matching
from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter
# get all windows
titles = pywinctl.getAllTitles()
title_completer = WordCompleter(titles)
try:
window = pywinctl.getWindowsWithTitle("Keep Talking and Nobody Explodes")[0]
except IndexError:
try:
text = prompt("Select window name> ", completer=title_completer)
window = pywinctl.getWindowsWithTitle(text)[0]
except IndexError:
print("invalid title")
exit()
if not window.isVisible:
window.show()
frame = window.getClientFrame()
print(frame)
def get_image(left, top, right, bottom): # returns an opencv image
image = pyautogui.screenshot(region=(
left, top, right - left, bottom - top
))
numpy_array = numpy.array(image)
opencv_image = cv.cvtColor(numpy_array, cv.COLOR_RGB2BGR)
return opencv_image
rgb_colors_to_match = [
(220, 162, 129),
(220, 162, 129),
(145, 108, 89),
]
num_colors_in_range = 9
delta_h_value = 10
delta_s_value = 50
delta_v_value = 50
tolerence_value = 20
ranges = [
matching.generate_hex_range(i, num_colors_in_range, delta_h=delta_h_value, delta_s=delta_s_value, delta_v=delta_v_value)
for i in rgb_colors_to_match
]
def are_rectangles_close(rect1, rect2):
distance_threshold = 20
x1, y1, w1, h1 = rect1
x2, y2, w2, h2 = rect2
return abs(x2 - x1) < distance_threshold and abs(y2 - y1) < distance_threshold
while True:
image = get_image(frame.left, frame.top, frame.right, frame.bottom)
blank = numpy.zeros(image.shape, dtype='uint8')
combined = image
matched = matching.color_matching(image, ranges[0])
combined = matching.convert_masked_pixels_to_zero(combined, matched)
matched = matching.color_matching(image, ranges[1])
combined = matching.convert_masked_pixels_to_zero(combined, matched)
matched = matching.color_matching(image, ranges[2])
combined = matching.convert_masked_pixels_to_zero(combined, matched)
min_contour_length = 100
max_contour_length = 10000
bw = cv.cvtColor(combined, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(bw, 127, 255, cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
filtered_contours = [cnt for cnt in contours if min_contour_length <= cv.arcLength(cnt, True) <= max_contour_length]
monster_contour = numpy.concatenate(filtered_contours)
hull = cv.convexHull(monster_contour)
bounding_quad = cv.minAreaRect(hull)
points = cv.boxPoints(bounding_quad).astype(int)
print(points)
cv.drawContours(combined, [points], 0, (0, 255, 0), 2)
cv.drawContours(combined, filtered_contours, -1, (0,255,255), 2)
cv.imshow('test', combined)
key = cv.waitKey(1)
if (key) == 113: # q key
break
cv.destroyAllWindows()

View File

@ -1,59 +0,0 @@
import cv2
import numpy as np
def rgb_to_hsv(rgb_color):
# Convert RGB color to HSV color space
hsv_color = cv2.cvtColor(np.uint8([[rgb_color]]), cv2.COLOR_RGB2HSV)[0][0]
return hsv_color
def generate_hex_range(rgb_color, num_colors, delta_h=10, delta_s=50, delta_v=50):
# Convert the RGB color to HSV color space
hsv_color = rgb_to_hsv(rgb_color)
# Define ranges in HSV color space
h_range = np.linspace(hsv_color[0] - delta_h, hsv_color[0] + delta_h, num_colors)
s_range = np.linspace(hsv_color[1] - delta_s, hsv_color[1] + delta_s, num_colors)
v_range = np.linspace(hsv_color[2] - delta_v, hsv_color[2] + delta_v, num_colors)
hex_range = []
# Generate colors in the HSV color space and convert them to BGR
for h_val in h_range:
for s_val in s_range:
for v_val in v_range:
hsv_color_modified = np.array([h_val, s_val, v_val])
bgr_color_modified = cv2.cvtColor(np.uint8([[hsv_color_modified]]), cv2.COLOR_HSV2BGR)[0][0]
hex_color = "#{:02x}{:02x}{:02x}".format(int(bgr_color_modified[2]),
int(bgr_color_modified[1]),
int(bgr_color_modified[0]))
hex_range.append(hex_color)
return hex_range
def color_matching(image, hex_range_colors, tolerance=20):
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
matched_pixels = np.zeros_like(hsv_image[:, :, 0], dtype=np.uint8)
for hex_color in hex_range_colors:
# Convert the hex color to RGB
rgb_color = tuple(int(hex_color[i:i + 2], 16) for i in (1, 3, 5))
# Convert the RGB color to HSV
hsv_color = rgb_to_hsv(rgb_color)
lower_bound = np.array([hsv_color[0] - tolerance, hsv_color[1] - tolerance, hsv_color[2] - tolerance])
upper_bound = np.array([hsv_color[0] + tolerance, hsv_color[1] + tolerance, hsv_color[2] + tolerance])
mask = cv2.inRange(hsv_image, lower_bound, upper_bound)
matched_pixels |= mask
return matched_pixels
def convert_masked_pixels_to_zero(image, mask):
# Create an all-white (ones) image with the same shape as the original image
white_image = np.ones_like(image) * 255
# Use the mask to set all masked pixels in the original image to zero
result_image = cv2.bitwise_and(image, white_image, mask=cv2.bitwise_not(mask))
return result_image